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Delay Differential System

DDE State Space

𝐱̇(𝑡) =

𝑚

∑
𝑘=0

𝐴

𝑘

𝐱(𝑡

− 𝜏𝑘

) + 𝐵𝐮(𝑡),

𝐲(𝑡) = 𝐶𝐱(𝑡).

where 0 ≤ 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑚 < +∞.

Transfer Function

𝐻(𝑠) = 𝐶 (𝑠𝐼 −

𝑚

∑
𝑘=0

𝐴

𝑘𝑒−𝜏𝑘𝑠

)
−1

𝐵.
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Delay Differential Algebraic System
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Why the ℋ2-norm?

What is the energy of
the impulse response?

What is the steady-state power of
the output response to unit white noise?

(Compare: ℋ∞-norm is the maximal amplification.)
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The ℋ2-norm

Definition
For an exponentially stable system

‖𝐻‖ℋ2
= ( 12𝜋 ∫

+∞

−∞
Tr(𝐻(𝑖𝜔)∗ 𝐻(𝑖𝜔))d𝜔)

1
2 ,

else
‖𝐻‖ℋ2

= ∞.

4 2 0 2 4
0

2
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|H
(i

)|2

Finite when the system is stable and has no feedthrough.
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Challenges of DDAEs

• Hidden feedthrough. E.g.

( 1 00 0 ) 𝐱̇(𝑡) = ( 1 00 1 ) 𝐱(𝑡) + ( 1−2 ) 𝑢(𝑡),
𝑦(𝑡) = ( 1 1 ) 𝐱(𝑡).

⟹
𝑥̇1(𝑡) = 𝑥1(𝑡) + 𝑢(𝑡),
𝑦(𝑡) = 𝑥1(𝑡) + 2𝑢(𝑡).

• 𝐻(𝑠) usually has infinitely many poles in ℂ−.
• Sometimes even vertical chains.
• Instability after infinitesimal perturbation. E.g.

⟹ strong stability.

• Feedthrough after infinitesimal perturbation. E.g.

⟹ strong ℋ2-norm.
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• Hidden feedthrough.
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Computing the ℋ2-norm

1. Check for finiteness strong ℋ2-norm.
• Strong stability

⟹ Michiels [3].
• Feedthrough after infinitesimal perturbation

⟹ Mattenet et al. [4].

2. Approximate DDAE by DAE using pseudospectral discretization.

3. DAE to ODE by eliminating algebraic part.

4. Compute the ℋ2-norm of the ODE.

8



Computing the ℋ2-norm

1. Check for finiteness strong ℋ2-norm.

2. Approximate DDAE by DAE using pseudospectral discretization.

(𝜑̇1(𝑡)𝟎 ) = (𝒜11 𝒜12
𝒜21 𝒜22

) (𝜑1(𝑡)𝜑2(𝑡)
) + (ℬ1

ℬ2
) 𝐮(𝑡),

𝐲(𝑡) ≈ (𝒞1 𝒞2) (
𝜑1(𝑡)
𝜑2(𝑡)

) .

3. DAE to ODE by eliminating algebraic part.

4. Compute the ℋ2-norm of the ODE.

8
(See Breda et al. [5].)
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1. Check for finiteness strong ℋ2-norm.
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̃𝐶 = 𝒞1 − 𝒞2𝒜 −1

22𝒜21, and 𝐷̃ = −𝒞2𝒜 −1
22ℬ2.

Theorem
Under fairly mild conditions on the used basis, 𝒜22 is invertible and
no feedthrough is introduced, if the original system satisfies step 1.

4. Compute the ℋ2-norm of the ODE.
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Computing the ℋ2-norm

1. Check for finiteness strong ℋ2-norm.

2. Approximate DDAE by DAE using pseudospectral discretization.

3. DAE to ODE by eliminating algebraic part.

4. Compute the ℋ2-norm of the ODE.
4.1 Solve 𝑉𝐴̃𝑇 + 𝐴̃𝑉 = −𝐵̃𝐵̃𝑇 for 𝑉.
4.2 Compute

‖𝐻‖2ℋ2
≈ Tr( ̃𝐶𝑉 ̃𝐶𝑇).

8
(See Vanbiervliet et al. [6].)
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Convergence
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Further Work

• Can we get similar convergence for multiple delays as
with one?

• Are there analytical bounds on the error to be found?
• How to choose 𝑁?

10



Further Work

• Can we get similar convergence for multiple delays as
with one?

• Are there analytical bounds on the error to be found?

• How to choose 𝑁?

10



Further Work

• Can we get similar convergence for multiple delays as
with one?

• Are there analytical bounds on the error to be found?
• How to choose 𝑁?

10



References

[1] Rifat Sipahi et al. “Stability and Stabilization of Systems with Time
Delay”. In: IEEE Control Systems 31.1 (2011).

[2] Suat Gumussoy and Wim Michiels. “Fixed-Order H-Infinity Control for
Interconnected Systems Using Delay Differential Algebraic
Equations”. In: SIAM Journal on Control and Optimization 49.5 (2011).

[3] Wim Michiels. “Spectrum-based stability analysis and stabilisation of
systems described by delay differential algebraic equations”. In: IET
Control Theory & Applications 5.16 (2011).

[4] Sébastien M. Mattenet et al. “An improved finiteness test and a
systematic procedure to compute the strong ℋ2 norm of differential
algebraic systems with multiple delays”. In: Automatica 144 (2022).

[5] Dimitri Breda et al. “Pseudospectral Differencing Methods for
Characteristic Roots of Delay Differential Equations”. In: SIAM Journal
on Scientific Computing 27.2 (2005).

[6] Joris Vanbiervliet et al. “Using spectral discretisation for the optimal
ℋ2 design of time-delay systems”. In: International Journal of Control
84.2 (2011).

11



Contributions

& Further Work

• A straightforward algorithm for the ℋ2-norm of DDAEs.
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not introducing feedthrough.

• A technique to shift poles of an unstable discretization.*

• Can we get similar convergence for multiple delays as
with one?

• Are there analytical bounds on the error to be found?
• How to choose 𝑁?

*Not discussed in this presentation.
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