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Delay Differential System
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Delay Differential System

DDE State Space

X(t)= > AX(t-T,)+But),
k=0

y(t) = Cx(t),

where 0 € Ty < T; < =+ < Ty, < +00.

Transfer Function

m -1
H(s) = C(sl - ZAke‘Tks) B.
k=0
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(More motivation: Gumussoy and Michiels [2].)
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Delay Differential Algebraic System

DD/ E State Space

X(t)= > ApX(t-Ty)+ Bu(t),
k=0

y(t) = Cx(t),

where 0 £ Tp < Ty <= < T, < +00,

Transfer Function

m -1
H(s) = C(sl - ZAke'Tks)B.
k=0
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Delay Differential Algebraic System

DDAE State Space

EX(t) = > AX(t - Ty) + Bu(t),
k=0

y(t) = Cx(t),
where 0 £ Ty < Ty <=+ < T, < +00, and E, in general, singular.

(Further assume causality and at most differentiation index 1.)

Transfer Function

m -1
H(s) = C(sE - ZAke'TkS)B.

k=0
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Why the 7%-norm?

What is the energy of
the impulse response?

What is the steady-state power of
the output response to unit white noise?

(Compare: Znorm is the maximal amplification.)



The 7,-norm

For an exponentially stable system
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The 7,-norm

For an exponentially stable system

1Hl 5, = [ Tr(H(iw)* lw))dw),

else

IHIl, = co.
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The 7,-norm

For an exponentially stable system

IH N5 =

else

|H(iw)|?
voa @

o

[ Tr(H(iw)* lw))dw),

IHIl, = co.

Finite when the system is stable and has no feedthrough.



Challenges of DDAEs

* Hidden feedthrough. E.g.

(19)%(t) = (§2)x(t)+ (%) u(v),
y(t) = (1 1)x(t).



Challenges of DDAEs

* Hidden feedthrough. E.g.
(58)%(t)=(39)x(t)+ (%) uto)
y(t) = (1 1)x(t),

xa(t) = X, (8) + u(t),
y(t) = X,(8) + 20(1).



Challenges of DDAEs

* H(s) usually has infinitely many poles in C". E.g.
x(t) = -x(t - 1) + u(t),
y(t) = x(t).
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* H(s) usually has infinitely many poles in C". E.g.

H(s) = (s +e™)!
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Challenges of DDAEs

* Sometimes even vertical chains. E.g.

(18)%(0) = (§9)x(®)+(§ 3" )x(t-1)+(3)u(®),
y(t) = (1 0)x(t).



Challenges of DDAEs

* Sometimes even vertical chains. E.g.

(16)%® = (§9)x(®)+ (5" )x(t =1+ () u(t)
y() = (10)x(t),

Xa(t) = - 14, (E - 1) + u(o)
y(t) = x(t).
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Challenges of DDAEs
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Challenges of DDAEs

* Instability after infinitesimal perturbation. E.g.

(18)%) = (g7 0)x() + (50 ) x(t = 1)+ (§57)x(t - 2).



Challenges of DDAEs

* Instability after infinitesimal perturbation. E.g.

(78)%(e) = (74 3)x(t)+ (§ 0 )x(t - 1)+ (§ 74 ) x(t - 2).
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Challenges of DDAEs

* Instability after infinitesimal perturbation. E.g.

(19)R(t) = (72 Q) x(t) + (30 )x(t - 1) + (32 )x(t - 2 + ).
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Challenges of DDAEs

* Instability after infinitesimal perturbation
= strong stability. E.g.

(19)R(t) = (72 Q) x(t) + (30 )x(t - 1) + (32 )x(t - 2 + ).

.
100 e
) o
o
50 .
_ ; g
2 o0 .
£ .
B :
50 .
.
o
-100 5,
.
-150 — U
-15 “10 ~05 0.0 05

Re(s)



Challenges of DDAEs

* Feedthrough after infinitesimal perturbation. E.g.

. 1000 0010
0x(1) = (8388 )x)- (8888 e -7
0001 0000
0000 0000 0
-(888?) x(e-ms)- (3888 )uct-m) - (8 uto)
0000 0000 1
y(t)=(1100)x(t)



Challenges of DDAEs

* Feedthrough after infinitesimal perturbation. E.g.

y(t) = u(t - (r; + 1)) - u(t - 75).



Challenges of DDAEs

* Feedthrough after infinitesimal perturbation
= strong #,-norm. E.g.

y(t) = u(t - (r; + 1,)) - u(t - 75).



Challenges of DDAEs

* Hidden feedthrough.
* H(s) usually has infinitely many poles in C".
* Sometimes even vertical chains.

* Instability after infinitesimal perturbation
= strong stability.

* Feedthrough after infinitesimal perturbation
= strong 7,-norm.



Computing the %-norm

1. Check for finiteness strong %-norm.

* Strong stability
= Michiels [3].

* Feedthrough after infinitesimal perturbation
= Mattenet et al. [4].



Computing the %-norm

1.
2. Approximate DDAE by DAE using pseudospectral discretization.

(8°)-(n )G - (e

o= g

(See Breda et al. [5].)



Computing the %-norm

1.
2.
3. DAE to ODE by eliminating algebraic part.

@,(t) = Ap,(t) + Bu(t),
y(t) = Cop, (t) + Du(t),

With A = .52{11 - d‘lzdz_;dzh é = ‘%1 - ﬂ12d£;%2'
C=% -Gd;)dy,and D =-6,9;]%B,.



Computing the %-norm

1.
2.
3. DAE to ODE by eliminating algebraic part.

@4(t) = A, (t) + Bu(t),
y(t) = Coq(t),

With A = .9{11 - .d-lzﬂz_;dz‘], B = l%‘l - .Ql]zd_‘lz%z,
C %1 - (gzdz_;.dz‘l, and 5 = _%Zﬂigl%z = 0.

Under fairly mild conditions on the used basis, &, is invertible and
no feedthrough is introduced, if the original system satisfies step 1.



Computing the %-norm

1.
2.
3.

4. Compute the %-norm of the ODE.

41 Solve VAT +AV =-BBT for V.
4.2 Compute
2 /T
IHI3, = Tr(CvCT).

(See Vanbiervliet et al. [6].)
8



Computing the %-norm

1. Check for finiteness strong #-norm.

2. Approximate DDAE by DAE using pseudospectral discretization.
3. DAE to ODE by eliminating algebraic part.

4. Compute the %-norm of the ODE.
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Convergence of our method for a few easy examples.



Convergence
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Convergence of our method for a few easy examples.



Further Work

+ Can we get similar convergence for multiple delays as
with one?
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Further Work

+ Can we get similar convergence for multiple delays as
with one?
* Are there analytical bounds on the error to be found?

* How to choose N?
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