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]



Why delay?

e

Plant feedback
(500 ms)

& 5%

exposure
—_—

3 days
—_—

(More examples: Sipahi et al. (2011).)

1



Delay differential system

DE state space



Delay differential system

DDE state space

X(t)= > AX(t-Ty)+But),
k=0

y(t) = Cx(t),

where 0 < Tp < Tq < =+ < Ty, < +00.

Transfer function

-1

G(s) = C(sl - ZAke‘Tks) B.

k=0



Why algebraic constraints?
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(More motivation: Gumussoy and Michiels (2011).)
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Delay differential algebraic system

DD/ E state space

‘

X(t) = > ApX(t - Tp) + Bu(t),
k=0
y(t) = Cx(t),

where 0 < Ty < T1 < =+ < Ty, < +00.

Transfer function

-1

G(s) = (sl - ZAke‘Tks)



Delay differential algebraic system

DDAE state space

EX(t) = > AX(t - Ty) + Bu(t),
k=0

y(t) = Cx(t),

where 0 € Ty < T4 < =+ < Tpy < +00, and E, in general, singular.

Transfer function

-1

G(s) = C(sE - ZAke‘Tks) B.

k=0



Delay differential algebraic system

DDAE state space

EX(t) = > AeX(t - Ty) + Bu(t),
k=0

y(t) = Cx(t),
where 0 € Ty < T4 < =+ < Tpy < +00, and E, in general, singular.

(Further assume causality and at most differentiation index 1.)

Transfer function

-1

G(s) = C(sE - ZAke‘Tks) B.

k=0



Why the H?-norm?

What is the energy of
the impulse response?
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the output response to unit white noise?



Why the H?-norm?

What is the energy of
the impulse response?

What is the steady-state power of
the output response to unit white noise?

(Compare: H*-norm is the maximal amplification.)



The H2-norm

For an exponentially stable system
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161 = (55 [ 6wl dw) etse Y6, =
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The H2-norm

For an exponentially stable system
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The H2-norm

For an exponentially stable system

3
161 = (55 [ 6wl dw) etse Y6, =
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Finite when the system is stable and has no feedthrough.



Challenges of DDAEs

* Hidden feedthrough. E.g.



Challenges of DDAEs

* Hidden feedthrough. E.g.
(58)%) = (5 9)x)+ (%) u(),
y(t) = (1 1)x(1),

X (t) = x4 (t) + u(t),
y(t) = xq(t) + 2u(t).



Challenges of DDAEs

* G(s) usually has infinitely many polesin C". E.g.
x(t) = -x(t - 1) + u(t),
y(t) = x(t).
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Challenges of DDAEs

* G(s) usually has infinitely many polesin C". E.g.

G(s) = (s+e)”
= polesats=-Iln|s|+i(args+(2k+1)m) Yk € Z.

150

100

Im(s)

=50

-100

Io
%,
-._..-

-150




Challenges of DDAEs

* Sometimes even vertical chains. E.g.

(19)x(t) = (39)x(t)+ (3 g7 )x(t - 1)+ (3) u(t),
y(t) = (10)x(t).



Challenges of DDAEs

* Sometimes even vertical chains. E.g.
(18)%() = (89)x(®)+ (5" )x(t - 1)+ (§)utt),
y(t) = (10)x(t),
Ka(t) = =i (t= 1)+ u(e),
y(t) = Xy (t).

=



Challenges of DDAEs

* Sometimes even vertical chains. E.g.

G(s) = (s + %se's)_1



Challenges of DDAEs

* Sometimes even vertical chains. E.g.
s+ lces)"
G(s) = (s+ Sse )
= polesats=0ands=-ln2+i(2k+ 1) Yk € Z.
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Challenges of DDAEs

* Instability after infinitesimal perturbation. E.g.

(18)x(®) = (g2 9)x(®)+ (5% )x(t=1)+ (5 ) x(t - 2).



Challenges of DDAEs

* Instability after infinitesimal perturbation. E.g.

(19)x(t)= (792 §)x(t) + (§ 4 )x(t - 1)+ (§ 73 )x(t - 2).
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Challenges of DDAEs

* Instability after infinitesimal perturbation. E.g.

(19)5(t) = (1 0)x(®) + (37 )x(t - 1) (21 )x(t -2+ ),
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Challenges of DDAEs

* Instability after infinitesimal perturbation
= strong stability. E.g.

(19)5(t) = (1 0)x(®) + (37 )x(t - 1) (21 )x(t -2+ ),
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Challenges of DDAEs

* Feedthrough after infinitesimal perturbation. E.g.

. 1000 0010
0x(0) = (342 )xe)- (3888 xte-m)
0001 0000
0000 0000 0
-(888?) x(t-m2)- (8888 Jate-m5) - () uto)
0000 0000 1
y(t) =(1100)x(t)



Challenges of DDAEs

* Feedthrough after infinitesimal perturbation. E.g.

y(t) = u(t - (1 + 1)) - u(t - 75).



Challenges of DDAEs

* Feedthrough after infinitesimal perturbation
= strong H?>-norm. E.g.

y(t) = u(t - (1 + 1)) - u(t - 75).



Challenges of DDAEs

Hidden feedthrough.

G(s) usually has infinitely many poles in C".
* Sometimes even vertical chains.

* Instability after infinitesimal perturbation
= strong stability.

* Feedthrough after infinitesimal perturbation
= strong H?-norm.



Computing the H2-norm of an ODE

x(t) = Ax(t) + Bu(t), G, = Jtr(CPCT), where

y(t) = Cx(t). .
AP + PAT = -BB.

(See Zhou et al. (1995, Lemma 4.6).)
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Computing the H2-norm of an ODE

EX(t) = AX(t) + Bu(t), IGll,. = JXr(CPCT), where
y(t) = Cx(t),

with E invertible.

APET + EPAT = -BBT.

(See Zhou et al. (1995, Lemma 4.6).)
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Approximating the H2-norm of a DDAE

1. Check for finiteness strong H2-norm.

* No instability after infinitesimal delay perturbation?
= Michiels (2011).

* No feedthrough after infinitesimal delay perturbation?
= Mattenet et al. (2022).



Approximating the H2-norm of a DDAE

1.
2. Approximate DDAE by DAE using spectral method.*

i [ R g [ A

- (2

*See e.g. Provoost and Michiels (2024).
Here already after projection on subspaces of &, such that &, is invertible.



Approximating the H2-norm of a DDAE

1.

2.
3. DAE to ODE by eliminating algebraic part.

EPa(t) = A, (t) + Bu(t),
yu(t) = C4(t) + Du(t),
B =B, - A1, A3 B,,

with A = Aqq - A1 A55 A,
D = -G, A5 B,.

C =€ - CuA;3 Ay, and



Approximating the H?-norm of a DDAE

1.

2.
3. DAE to ODE by eliminating algebraic part.

EnP(t) = Ags(t) + Bu(t),
yn(t) = Cops (1),

o

with A = Aqq - A1 AL A, = By - A145,B,,
C= G - CA50A,, and D=-CA5)8B, = 0.

A, is almost always invertible and no feedthrough is introduced, if the original system

is strongly stable and has no hidden feedthrough.



Approximating the H2-norm of a DDAE

1.
2.
3.
4. Compute the H2-norm of the ODE.
41 Solve APEI, +&,PAT = -BBT for P.

4.2 Compute
G, = ,/tr(CPCT).



Approximating the H2-norm of a DDAE

1. Check for finiteness strong H2-norm.

2. Approximate DDAE by DAE using spectral method.
3. DAE to ODE by eliminating algebraic part.

4. Compute the H2-norm of the ODE.
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Computing the derivative

We can find explicit expressions using the dual Lyapunov equation
ATQS']'] + (9]]—1 QA = -CTC,

from a typical adjoint style method.

(Analogous to Vanbiervliet et al. (2009).)
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Computing the derivative

Let LP = APE], + £,,PAT, then

‘Pp:LP"'ééT:o,

and
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Computing the derivative

Let LP = APE], + £,,PAT, then

‘Pp:LP"'ééT:o,
t=£*Q+C’C=0.

and

L



Computing the derivative

Let X be some variable different from P or Q, then the total derivative is

ol .
d{’p—ﬁdP+WdX—0, and
Po=£*Q+C’C=0.
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Computing the derivative

Let X be some variable different from P or Q, then the total derivative is

ofp |
LdP+de—0, and
£*Q+C’C=0.
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Computing the derivative

Then,

o?

- _p-19%
dP=-L 3X dX, and

Q=-£*CTC.
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Computing the derivative

From Q = Q" we have,

C'CdP=Q

o
ox

dx,

and
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Computing the derivative

From Q = Q" and P = PT we have,

o
ox

~ = of
T - Q
BB'dQ = P_ax dXx.

CTCdP = Q=L dx,

and

1



Computing the derivative

From ||Gyl|7, = tr(CPCT) = tr(BTQB),
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Computing the derivative
From ||Gyl|7, = tr(CPCT) = tr(BTQB),
2 olp
d " GN "H2 = tr(Qy dX)

Pax

ol
tr( a dX).

1



Computing the derivative

After many tedious but simple steps and from df = tr(Y"dX) = % =Y,

(See Magnus and Neudecker (1985).)
1



Computing the derivative

d

After many tedious but simple steps and from df = tr(Y"dX) = %=
d"GN"i2 1\T BT T Tl F T
d"G’V"IZ-I2 In\" RRTWT _ WTET TAT
roah -2 tr(( 7 ) (QuEnPy - QuBBRW] - WiC[CPy )€, D] Ak),
diGul?: v - diGull;.
—dB = 2( 6’) QUB' and T = ZCP\/[Eo]T,

where Qq = (U* - A12A4510)'Q, Py = P(V* - VA51A4,), and Wy = VA51U.

(See Magnus and Neudecker (1985).)
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Computing the derivative

By only solving one additional Lyapunov equation
= the derivative with respect to every parameter.
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Validation of derivatives
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Further work

* Use these building blocks to optimize a control design.
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* Can we get similar convergence for multiple delays as with one?
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Further work

* Use these building blocks to optimize a control design.

* Can we prove the supergeometric convergence with one delay?
* Can we get similar convergence for multiple delays as with one?
* Error bounds that help choosing N.
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Contributions

* A straightforward algorithm for the H2-norm of DDAEs.
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Contributions & further work

A straightforward algorithm for the H?>-norm of DDAEs.
An extension of this method to compute the derivatives.

Theoretical results on the spectral discretization not introducing
feedthrough.

Use these building blocks to optimize a control design.

Can we prove the supergeometric convergence with one delay?
Can we get similar convergence for multiple delays as with one?
Error bounds that help choosing N.
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