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Why delay?
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exposure 3 days
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Delay differential system

DDE state space

�̇�(𝑡) =

𝑚

∑
𝑘=0

𝐴

𝑘

𝐱(𝑡

− 𝜏𝑘

) + 𝐵𝐮(𝑡),

𝐲(𝑡) = 𝐶𝐱(𝑡).

where 0 ≤ 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑚 < +∞.

Transfer function

𝐺(𝑠) = 𝐶 (𝑠𝐼 −

𝑚

∑
𝑘=0

𝐴

𝑘𝑒−𝜏𝑘𝑠

)
−1

𝐵.
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Why algebraic constraints?

Plant A

Plant B

Plant C

interaction(15ms)

intera
ction

(150m
s)

feedback
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Cambridge
Leuven
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travel

travel
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Delay differential algebraic system
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Why the 𝐻2-norm?

What is the energy of
the impulse response?

What is the steady-state power of
the output response to unit white noise?

(Compare: 𝐻∞-norm is the maximal amplification.)
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The 𝐻2-norm

Definition
For an exponentially stable system

‖𝐺‖𝐻2 = (
1
2𝜋 ∫

+∞

−∞
‖𝐺(𝑖𝜔)‖

2

𝐹
d𝜔)

1
2

else ‖𝐺‖𝐻2 = ∞.

4 2 0 2 4
0

2
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|G
(i

)|2

Finite when the system is stable and has no feedthrough.
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Challenges of DDAEs

• Hidden feedthrough. E.g.

( 1 00 0 ) �̇�(𝑡) = ( 1 00 1 ) 𝐱(𝑡) + ( 1−2 ) 𝑢(𝑡),
𝑦(𝑡) = ( 1 1 ) 𝐱(𝑡).

⟹
�̇�1(𝑡) = 𝑥1(𝑡) + 𝑢(𝑡),
𝑦(𝑡) = 𝑥1(𝑡) + 2𝑢(𝑡).

• 𝐺(𝑠) usually has infinitely many poles in ℂ−.
• Sometimes even vertical chains.
• Instability after infinitesimal perturbation. E.g.

⟹ strong stability.

• Feedthrough after infinitesimal perturbation. E.g.

⟹ strong 𝐻2-norm.
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0 0 1 0
0 0 0 1
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0
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0
1
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Computing the 𝐻2-norm of an ODE

𝐸

�̇�(𝑡) = 𝐴𝐱(𝑡) + 𝐵𝐮(𝑡),
𝐲(𝑡) = 𝐶𝐱(𝑡).

with 𝐸 invertible.

‖𝐺‖𝐻2 = √tr(𝐶𝑃𝐶𝑇), where

𝐴𝑃

𝐸𝑇

+

𝐸

𝑃𝐴𝑇 = −𝐵𝐵𝑇.

8
(See Zhou et al. (1995, Lemma 4.6).)
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Approximating the 𝐻2-norm of a DDAE

1. Check for finiteness strong 𝐻2-norm.
• No instability after infinitesimal delay perturbation?

⟹ Michiels (2011).
• No feedthrough after infinitesimal delay perturbation?

⟹ Mattenet et al. (2022).

2. Approximate DDAE by DAE using spectral method.

3. DAE to ODE by eliminating algebraic part.

4. Compute the 𝐻2-norm of the ODE.
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Approximating the 𝐻2-norm of a DDAE

1. Check for finiteness strong 𝐻2-norm.

2. Approximate DDAE by DAE using spectral method.*

(ℰ11 𝟎
𝟎 𝟎) (

�̇�1(𝑡)
�̇�2(𝑡)

) = (𝒜11 𝒜12
𝒜21 𝒜22

) (𝜑1(𝑡)𝜑2(𝑡)
) + (ℬ1

ℬ2
) 𝐮(𝑡),

𝐲𝑁(𝑡) = (𝒞1 𝒞2) (
𝜑1(𝑡)
𝜑2(𝑡)

) .

3. DAE to ODE by eliminating algebraic part.

4. Compute the 𝐻2-norm of the ODE.

*See e.g. Provoost and Michiels (2024).
Here already after projection on subspaces of ℰ𝑁, such that ℰ11 is invertible.

9



Approximating the 𝐻2-norm of a DDAE

1. Check for finiteness strong 𝐻2-norm.
2. Approximate DDAE by DAE using spectral method.
3. DAE to ODE by eliminating algebraic part.

ℰ11�̇�1(𝑡) = �̃�𝜑1(𝑡) + �̃�𝐮(𝑡),
𝐲𝑁(𝑡) = ̃𝐶𝜑1(𝑡) + �̃�𝐮(𝑡),

with �̃� = 𝒜11 −𝒜12𝒜−1
22𝒜21, �̃� = ℬ1 −𝒜12𝒜−1

22ℬ2,
̃𝐶 = 𝒞1 − 𝒞2𝒜−1

22𝒜21, and �̃� = −𝒞2𝒜−1
22ℬ2.

Theorem
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Approximating the 𝐻2-norm of a DDAE

1. Check for finiteness strong 𝐻2-norm.

2. Approximate DDAE by DAE using spectral method.

3. DAE to ODE by eliminating algebraic part.

4. Compute the 𝐻2-norm of the ODE.
4.1 Solve �̃�𝑃ℰ𝑇11 + ℰ11𝑃�̃�𝑇 = −�̃��̃�𝑇 for 𝑃.
4.2 Compute

‖𝐺‖𝐻2 ≈ √tr( ̃𝐶𝑃 ̃𝐶𝑇).
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Convergence
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Convergence
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Convergence for some simple examples using a Lanczos tau method in 𝑈𝑁.
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Computing the derivative

We can find explicit expressions using the dual Lyapunov equation

�̃�𝑇𝑄ℰ11 + ℰ𝑇11𝑄�̃� = − ̃𝐶𝑇 ̃𝐶,

from a typical adjoint style method.

11
(Analogous to Vanbiervliet et al. (2009).)



Computing the derivative

Let ℒ𝑃 = �̃�𝑃ℰ𝑇11 + ℰ11𝑃�̃�𝑇, then

ℓ𝑃 = ℒ𝑃 + �̃��̃�𝑇 = 𝟎, and

ℓ𝑄 = ℒ∗𝑄 + ̃𝐶𝑇 ̃𝐶 = 𝟎.
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Computing the derivative

Let 𝑋 be some variable different from 𝑃 or 𝑄, then the total derivative is

dℓ𝑃 =
𝜕ℓ𝑃
𝜕𝑃 d𝑃 +

𝜕ℓ𝑃
𝜕𝑋 d𝑋 = 𝟎, and

ℓ𝑄 = ℒ∗𝑄 + ̃𝐶𝑇 ̃𝐶 = 𝟎.
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Computing the derivative

Let 𝑋 be some variable different from 𝑃 or 𝑄, then the total derivative is

dℓ𝑃 =

ℒd𝑃 + 𝜕ℓ𝑃𝜕𝑋 d𝑋 = 𝟎, and

ℓ𝑄 =

ℒ∗𝑄 + ̃𝐶𝑇 ̃𝐶 = 𝟎.
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Computing the derivative

Then,

d𝑃 = −ℒ−1𝜕ℓ𝑃𝜕𝑋 d𝑋 , and

𝑄 = −ℒ−∗ ̃𝐶𝑇 ̃𝐶.

11



Computing the derivative

From 𝑄 = 𝑄𝑇 we have,

̃𝐶𝑇 ̃𝐶 d𝑃 = 𝑄𝜕ℓ𝑃𝜕𝑋 d𝑋 , and

�̃��̃�𝑇 d𝑄 = 𝑃
𝜕ℓ𝑄
𝜕𝑋 d𝑋 .
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Computing the derivative

From 𝑄 = 𝑄𝑇 and 𝑃 = 𝑃𝑇 we have,

̃𝐶𝑇 ̃𝐶 d𝑃 = 𝑄𝜕ℓ𝑃𝜕𝑋 d𝑋 , and

�̃��̃�𝑇 d𝑄 = 𝑃
𝜕ℓ𝑄
𝜕𝑋 d𝑋 .
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Computing the derivative

From ‖𝐺𝑁‖
2
𝐻2 = tr( ̃𝐶𝑃 ̃𝐶𝑇) = tr(�̃�𝑇𝑄�̃�),

d‖𝐺𝑁‖
2
𝐻2 = tr(𝑄

𝜕ℓ𝑃
𝜕𝑋 d𝑋)

= tr(𝑃
𝜕ℓ𝑄
𝜕𝑋 d𝑋).
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Computing the derivative
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Computing the derivative

After many tedious but simple steps and from d𝑓 = tr(𝑌𝑇 d𝑋) ⟹ d𝑓
d𝑋
= 𝑌,

d‖𝐺𝑁‖
2
𝐻2

d𝐴𝑘
= 2( 𝐼𝑛𝟎 )

𝑇
(𝑄𝑈ℰ11𝑃𝑉 − 𝑄𝑈�̃�ℬ𝑇

𝑁𝑊𝑇
𝒜 − 𝑊𝑇

𝒜𝒞
𝑇
𝑁 ̃𝐶𝑃𝑉)[𝜀−𝜏𝑘]

𝑇,

d‖𝐺𝑁‖
2
𝐻2

d𝜏𝑘
= −2 tr(( 𝐼𝑛𝟎 )

𝑇
(𝑄𝑈ℰ11𝑃𝑉 − 𝑄𝑈�̃�ℬ𝑇

𝑁𝑊𝑇
𝒜 − 𝑊𝑇

𝒜𝒞
𝑇
𝑁 ̃𝐶𝑃𝑉)[𝜀−𝜏𝑘𝒟]

𝑇𝐴𝑇𝑘),

d‖𝐺𝑁‖
2
𝐻2

d𝐵 = 2( 𝐼𝑛𝟎 )
𝑇𝑄𝑈�̃�, and

d‖𝐺𝑁‖
2
𝐻2

d𝐶 = 2 ̃𝐶𝑃𝑉[𝜀0]𝑇,

where 𝑄𝑈 = (𝑈⟂ −𝒜12𝒜−1
22𝑈)

𝑇𝑄, 𝑃𝑉 = 𝑃(𝑉⟂ − 𝑉𝒜−1
22𝒜21)

𝑇, and 𝑊𝒜 = 𝑉𝒜−1
22𝑈.

11
(See Magnus and Neudecker (1985).)
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Computing the derivative

By only solving one additional Lyapunov equation
⟹ the derivative with respect to every parameter.
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Validation of derivatives
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Further work

• Use these building blocks to optimize a control design.

• Can we prove the supergeometric convergence with one delay?
• Can we get similar convergence for multiple delays as with one?
• Error bounds that help choosing 𝑁.
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