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Why are we looking at Lanczos tau methods?
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In this talk: single delay RDDE

State space

X(t) = Apx(t) + Ay x(t - T) + Bu(t),
y(t) = Cx(t).

Transfer function

G(s) = C(sl, - Ag - A1e™)'B.



A functional differential equation

x(t)

j




A functional differential equation

y §tl




PDE formulation

§(0) = Ag&(0) + Ar&(-T) + Bu(t),
§(6) = -646),
y(t) = C&(0),

where ¢&; :[-T,0] - C",
6 — x(t +6).



PDE formulation

§(0) = Ag&(0) + Ar&(-T) + Bu(t),
§(6) = -646),
y(t) = C&(0).

Either collocate or apply Lanczos tau method.

(See Breda et al. [1] for collocation.)
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Lanczos tau discretization

()& =( 5 ) «(g)uo,
y(t) = Ceody

with €98 = §(0) and (DE)(6) = —-£(6).



Lanczos tau discretization

[ o (o5 e o

yu(t) = CeoSen,

with 71§ = € - (S, ) dy.

(Initially presented by Ito and Teglas [2].)
5



Lanczos tau discretization

(:7;(_)1 ) € = (A0£0 ; A1£_T) Sen + ( )u(t),

yn(t) = CeoSen,

with 1§ = § - (&, dn) -

Note, (. ) is always invertible.



Equivalence to pseudospectral collocation



Equivalence to pseudospectral collocation

§tN(0) = AoSin(0) + A1§in(-T) + Bu(t),
€tN - (fthd)N)‘PN = '—thN-



Equivalence to pseudospectral collocation

é:‘tN(O) = AoSn(0) + A1 &y (-T) + Bu(t),
ftN(ek) = '—thN(ek) V¢N(9k) = 0.



Equivalence to pseudospectral collocation

é:.tN(O) = Ag&en(0) + Aq§en(-T) + Bu(t),
§in(6r) = DEn(Br) Y (Br) = 0.

A Lanczos tau method truncating in ¢y is equivalent to pseudospectral
collocation in {0}u {6 € [-T,0] : () = O}



X(t) = Agx(t) + A1x(t - T) + Bu(t)
y(t) = Cx(1)




X(t) = Agx(t) + A1x(t - T) + Bu(t)
y(t) = Cx(1)

& (6)=x(t+6)

€& =A & +B ult)
y(t)=0C§




X(t) = Agx(t) + A1x(t - T) + Bu(t)
y(t) = Cx(1)

§n(6) = x(t + 6)

Enéon = Anoy + Byu(t)
yu(t) = Cudun




Interpretation in frequency domain

X(t) = AgX(t) + AX(t - T) + Bu(t) | Sn(@)=X(t+6) | g & = 4\ &y + Byu(t)
ANNNNANS
yn(t) = Cnéin

y(t) = Cx(t)

9oejde

G(s) = C(sl, - Ag - A1e ™) "B |~~~ | Gy(s) = C(sly - Ag - Agry(s,-T)) "B

(See Vanbiervliet et al. [3].)
7



In the complex plane
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In the complex plane
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In the complex plane
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s & ry(s,-T) with ¢, = P,and N = 7
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Padé approximation

For the choice of {P}_, as basis, ry(s, -7) is an (N, N) Padé approximant of
s — e™™ around zero.



Padé approximation

Theorem

For the choice of {P,}}., as basis, ry(s,-T) is an (N, N) Padé approximant of
s — e ™ around zero.

Proof sketch

[rN(S, 0) = 17
Dry(s, -) = sSThyaru(s, -).



Padé approximation

Theorem

For the choice of {P}_, as basis, ry(s, -7) is an (N, N) Padé approximant of
s — e™™ around zero.

Proof sketch

-1
u(s,0)= o) (o) = [2ruts, )], = nte. i

where (Myf)(6) fo [£(3) - {f, Pu) Pn(§)1dTand fo(6) = 1.



Padé approximation

Theorem

For the choice of {P}_, as basis, ry(s, -7) is an (N, N) Padé approximant of
s — e™™ around zero.

Proof sketch

&o

-1
u(s,0)= o) (o) = [2ruts, )], = nte. i

where (Myf)(6) fo [£(3) - {f, Pu) Pn(§)1dTand fo(6) = 1.

Then show nle_ M fy = ge‘” " forn=0,..,2N.
" 50



Padé approximation

For the choice of {P}_, as basis, ry(s, -7) is an (N, N) Padé approximant of
s — e™™ around zero.

Corollary

Then Gy is G with s — e™™ replaced by an (N, N) Padé approximant around zero.



Sparse, self-nesting discretizations

Clearly span {¢k}g;0 C span {¢k}gjo for N, < N5, hence easy self-nesting.

(See Jarlebring et al. [4] and Olver and Townsend [5].)
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Sparse, self-nesting discretizations

Clearly span {¢k}g;0 C span {¢k}gjo for N, < N5, hence easy self-nesting.

Choose ¢y, = U, but represent input with respect to {T,}\.,,

(See Jarlebring et al. [4] and Olver and Townsend [5].)
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Sparse, self-nesting discretizations

Clearly span {¢k}ﬁ;0 C span {¢k}g§0 for N, < N5, hence easy self-nesting.

Choose ¢y, = U, but represent input with respect to {T}\,, then
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Simple example of an (&, Ay) pencil at n(N + 1) = 22.

(See Jarlebring et al. [4] and Olver and Townsend [5].)
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An application: the H?-norm

Definition (stable system)

1

1 +00 ) =
G2 = (Ef_ ||G(lw)||idw)z'

where G(s) = C(sl, - A —A1e‘TS)‘1B.

1



Computing the H2-norm of an ODE

EX(t) = AX(t) + Bu(t), IGll,. = JEr(CVCT), where
y(t) = Cx(t),

with E invertible.

AVET + EVAT = -BBT.

(See zZhou et al. [6, Lemma 4.6].)
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Approximating the H2-norm of a RDDE

EnX(t) = AyX(t) + Byu(t), 161l = \J/tr(eyve]), where
y(t) = Enx(t),

with &y invertible.

ANVEL + ENVAS, = -ByB].

(See Vanbiervliet et al. [3].)
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Convergence

rel. err. |G||n2
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Polynomial formulation

As Pj = C"N
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Polynomial formulation

As P} = C"N we have P} ® P} = C"N*"N, namely

U(B,6') = 5, Vir d1(0)B4(6") € €.
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Polynomial formulation

As P} = C"N we have P} ® P} = C"N*"N, namely

U(B,6') = 5, Vir d1(0)B4(6") € €.

IGl2 = IGull 2 = \/tr(CnVER), where

ANVEL + ENVAL = -ByB].
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Polynomial formulation

As P} = C"N we have P} ® P} = C"N*"N, namely

U(B,6') = 5, Vir d1(0)B4(6") € €.

IGlly2 = IGull 2 = |/tr(CeoUegCT), where

T T
Aofo + A1 &+ U & N & U A0€0 + A1£—T -
D IN-1 IN-1 D

B
0

|

B
0

T

).
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Polynomial formulation

As P} = C"N we have P} ® P} = C"N*"N, namely

U(B,6') = 5, Vir d1(0)B4(6") € €.

IGlly2 = IGull 2 = |/tr(CeoUegCT), where

DUE] + Ty U(elA] + €LAT) = 0,
DUR, + RyUDT =0,

T
gqUg], = (gg Ug]) ,

(Aogo + Are_r)Ue] + gU(eJAT + €LAT) = -BBT.
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Polynomial formulation

As P} = C"N we have P} ® P} = C"N*"N, namely

U(B,6') = 5, Vir d1(0)B4(6") € €.

IGlly2 = IGull 2 = |/tr(CeoUegCT), where

some constraints on U.
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Symmetry is important

rel. err. |G||n2
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Symmetry is important

rel. err. |G||n2
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Symmetry is important

Pr(-T - 6) = (-1)"¢x(6), V6 &[-T,0].
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Symmetry is important

Pr(-T - 6) = (-1)"¢x(6), V6 &[-T,0].

Proposition

Under this assumption
|rv(iw,-1)| =1, YweR.
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Super convergence
LetAO =A1 =ac< 0,
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Super convergence
Let Ay =A; =a<0,then
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Super convergence

Let Ay = A, =a<0,then
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Contributions

Operator formulation of the Lanczos tau method for time-delay systems.
Equivalence to rational approximation in frequency domain, with explicit expressions.
Construction of sparse, self-nesting discretizations.

Equivalence to pseudospectral collocation, with the non-zero collocation points the
zeroes of ¢y.

Equivalence to Padé approximation when using a Legendre basis.

Illustrated super-geometric convergence, and proved for some cases super convergence,
for the H?>-norm.

For further details, see
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https://arxiv.org/abs/2403.03895

Explicit expression for the rational approximant

We have

rN(Sl 0) = 11
Dry(s, -) = Sh-1ru(s, -).
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Explicit expression for the rational approximant

We have
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Explicit expression for the rational approximant

We have

ool )

In the derivative basis {¢f\,N'k)}2’=0, this becomes
_ -1
Mgy \" [Oh0) 65T - $3(0) éu(0)
oy (6) 1
(N-1) e) S -1 0
r(s,8)= |9 ¢ s -1

ou(6) R A
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Explicit expression for the rational approximant

We have

-1

ool )

Thus, we get the explicit expression

qub(” "(6) sk

rN(Sr 6) (N R) (0) Sk
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Proving super convergence

ar-1

Analytically we find ||G||,%,2 =



Proving super convergence

ar-1

Analytically we find ||G||,2_,2 =

For the approximation we have ||Gy ||ﬁ2 = goUgl, where

DUEg] + ay1U(el + €7) = 0,
DUR, + Jy,UDT =0,
gUe], = (sg,Ueg)T,

a(g + £)Ue] + agoU(e] + €1) = -1.
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Proving super convergence

ar-1

Analytically we find ||G||,2_,2 =

For the approximation we have ||Gy ||ﬁ2 = p(0), where

DUEg] + ay1U(el + €7) = 0,
DUR, + Jy,UDT =0,
gUe], = (sg,U.sg)T,

a(g + £)Ue] + agoU(e] + €1) = -1.

Let p = Ug].
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Proving super convergence

ar-1

Analytically we find ||G||,%,2 =

For the approximation we have ||Gy ||ﬁ2 = p(0), where
DUEg] + ay1U(el + €7) = 0,
DURE, + Iy4UDT = 0,
ggUe], = (ee,Ueg)T,

a(g + £)Ue] + agoU(e] + €1) = -1.

Let p = Ugl. From Lemma we have Ue”, = RUg[ = Rp.
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Proving super convergence

ar-1

Analytically we find ||G||,2_,2 =

For the approximation we have ||Gy ||ﬁ2 = p(0), where

Dy +ay+(p + Ry) =0,
1
Eo(H + Rp) = -

22



Proving super convergence

ar-1

Analytically we find ||G||,2_,2 =

For the approximation we have ||Gy ||ﬁ2 = p(0), where

Dy +ady+(p+Ry) =0,
1
Eo(H + Rp) = -

For N = 1, this has the unique solution p(6) = ”

ar+2a6-1
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